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ABSTRACT 
A bounded linear operator between Banach spaces is called comple te ly  

continuous if it carries weakly convergent sequences into norm convergent 
sequences. Isolated is a universal operator for the class of non-completely- 
continuous operators from LI into an arbitrary Banach space, namely, the 

operator from LI into too defined by 

To(f)= ( /  rnf dPl n>_ O ' 

where rn is the nth Rademacher function. It is also shown that there does 
not exist a universal operator for the class of non-completely-continuous 
operators between two arbitrary Banach spaces. The proof uses the factor- 
ization theorem for weakly compact operators and a Tsirelson-like space. 

Suppose  t h a t  ~: is a class of  (always bounded ,  l inear,  be tween Banach  spaces)  

ope ra to r s  so t ha t  an  o p e r a t o r  S is in E whenever  the  doma in  of S is the  d o m a i n  
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of some operator in ~ and there exist operators A, B so that B S A  is in ~; 

the natural examples of such classes are all the operators that do not belong to 

a given operator ideal. A subset ~ of such a class ~: is said to be un iversa l  

for ~: provided for each U in ~, some member of G factors through U; that is, 

there exist operators A and B so that  B U A  is in 6 .  In case G is singleton, say 

= {S}, we say that  S is universal for ~:. 

In order to study a class ~ of operators, it is natural to try to find a universal 

subclass of ~ consisting of specific, simple operators. For certain classes, such 

a subclass is known to exist. For example, Lindenstrauss and Petczytiski, who 

introduced the concept of universal operator, proved [LP] that the "summing 

operator" from i l  to Go, defined by {a,,}~__l ~ {)-'~=l ak}~--1 , is universal for 

the class of non-weakly-compact operators, while in [J] it was pointed out that  the 

formal identity from gl to Go is universal for the class of non-compact operators. 

An operator between Banach spaces is called comple t e ly  con t inuous  if 

it carries weakly convergent sequences into norm convergent sequences. The 

operator from L1 into Go given by 

(l,qL, T o ( f )  = r,~ 

where r ,  is the nth Rademacher function, is not completely continuous. We prove 

in Corollary 4 that To is universal for the class of non-completely-continuons 

operators from an Ll-Space; however, in Theorem 5 we show that there does not 

exist a universal non-completely-continuous operator. 

Throughout this paper, X denotes an arbitrary Banach space, X" the dual 

space of X, and S(~) the unit sphere of ~. The triple (f~, E, #) refers to the 

Lebesgue measure space on [0, 1], E+ to the sets in E with positive measure, and 

LI to LI(F~, ~, #). All notation and terminology, not otherwise explained, are as 

in [DU] or [LT]. 

To crystalize the ideas in Theorem 1, we introduce some terminology. A system 

A = {A~ �9 E: n = 0, 1, 2 , . . .  and k = 1 , . . . ,  2"} is a dyad ic  sp l i t t ing  of A ~ �9 

n 4"+1 and A~ '+1 of equal measure E + if each A k is partitioned into the two sets "'2k-~ 

for each admissible n and k .  Thus the collection r ,  = {A~: k = 1 , . . . ,  2"} of sets 

along the nth-level partition A ~ with ~r,+l refining ~ ,  and #(A~) = 2-"#(A~ 

To a dyadic splitting corresponds a (normalized) Haar system {hi}j>1 along with 

its natural blocking {H,}n>0 where 

2 ~ 1 1A ~ and h2,*+k = ~--(~1)(1A~'+_1 -- 1A~'+ ' )  hi = 
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f o r n = 0 , 1 , 2 , . . . ,  k = 1 , . . . , 2  n, andHn = { h i : 2  n-1 < j _ <  2n}. The usual 

Haar system (hi } corresponds to the usual dyadic splitting { [ ~ ,  ~ )  }n,k" Let 

LI(A)  be the closed subspace of L1 with basis {hi}j>1. 

A set N in the unit sphere of the dual of a Banach space :~ is said to norm 

a subspace ~o within v > 1 if for each x E ~o there is x* E N such that 

Ilxll <_ TX*(X). It is well known and easy to see that a sequence {~j}j~>l of 

subspaces of ~s forms a finite dimensional decomposition with constant at most v 

provided that for each n E N the space generated by {:El, . . . ,  ~s can be normed 

by a set from S(X~+I) within Tn > 1 where IIvn _< r. 

To help demystify Theorem 1, we examine more closely the operator To: L1 --* 

g~ given above. This operator does more than just map the Rademacher func- 

tions (rn} to the standard unit vectors {en} in ~ (which suffices to guarantee 

that it is not completely continuous). Let x* be the nth unit vector of gl, viewed 

as an element in the dual of ~ .  For the usual dyadic splitting of the unit inter- 

val, rn is just the sum of the Haar functions in Hn, properly normalized. Thus 

1 = I IT0rn II = x~ (Torn) follows from the stronger condition that 

x*(Toh) = ~n,,~ for each h e Hm. 

Note that T~x* is just rn, which as a sequence in L~ is weak*-null and equivalent 

to the unit vector basis of gl. Since To maps each element in Hn to en, the 

collection {sp ToH,~} forms a finite dimensional decomposition. Theorem 1 states 

that each non-completely-continuous operator T on L1 behaves like the operator 

To in the sense that there is some dyadic splitting of some subset of [0, 1] so that 

the corresponding Haar system with T enjoys the above properties of the usual 

Haar system with To. 

THEOREM 1: Let Y be a subset of S(  :~* ) that norms :~ within some fixed constant 

greater than one and let y be a subspace of X* that contains Y.  I f  the operator 

T: L1 ~ :E is not completely continuous and {rn}n>0 is a sequence of  numbers 

larger than 1, then there exist 

A n (A) a dyadic splitting .4 = { k }, 

(B) a sequence {x~}~>o in S ( X ' )  n y ,  

s.* l w  in S(:~*) for each n > O, (C) a finite set t~n,iJi=l 

such that for the Haar system {hi}j>1 and the blocking {H,~}n>o corresponding 

to A, for some ~ > 0, and each n, m >_ O, 

(1) x*(Th)  = 5. &~,m for each h �9 Hm, 
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(2) {T'x*} is weak*-null in Lm, 

(3) {T*x~} is equivalent to the unit vector basis of tl ,  

(4) * ,` tZn,iJi=l norms sp(Uj=o THj)  within r,`, 

(5) THn+I C • ! . .  IP~ lt " n , i  J i =  l " 

Note that condition (3) implies that {x~} is also equivalent to the standard unit 

vector basis of ~1. / f  I/r,, is finite, then the last two conditions guarantee that 

{spTH,`},`_>o forms a finite dimensional decomposition with constant at most 

I/v,`. 

The proof uses the following two standard lemmas. 

LEMMA 2: Let E = sp{xi}im=o be a finite dimensional subspace of a Banach 

space • and let y be a total subspace of ~.*. For each e > 0 there exists O > 0 

such that fly* E :~* satisfies l y * ( x d l  < o for each 1 < i < m, then there exists 

x* E E • of norm 0 or Ily*ll such that IIx ~ - y ' l l  < e. b-~rthermore, i f  y* is in y 

then x* can be taken to be in 3). 

Proof of Lemma 2: Assume, without loss of generality, {xi }ira_- o is linearly inde- 

pendent. Consider the isomorphism l: E ~ ~ that takes xi to the ith unit basis 

vector of t~' and let P be a projection from 3E onto E that  is w(Y)-continuous, 

so that  P'E*  is a subspace of Y. Such a projection exists because y is total. 

Then ~* -- y* �9 (Ix - P) is in E • . It is easy to check that  for ~/= ~ ,  

if ly*(xi)t < 7/for each i, then I1~* - Y*II -< ~- If I1:}*1t = 0, then let x* = ~*. 

Otherwise, let x* = (][Y*H / IIx*ll) ~*- Then IIx* - Y*H -< 2Hx* - Y*]I. Thus x* 

does what it should do. | 

Recall that  the extreme points of B(Loo) are just the • measurable 

functions. 

�9 n LEMMA 3: I f  {fi}~=O is a finite subset of L1, {a,}i_- 0 are scalars, and 

S = {g E B(Loo): / f ,  gd# = ai foreach 0 < i < n } ,  

then ext S = St3ext B(Loo), where ext denotes the extreme points of a set. Also, 

i f  S is non-empty then so is ext S. 

Specifically, we use the following version of this extreme point argument lemma. 
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LEMMA 3': If F = { f l , - . -  , fn} and there exists g in B(Loo) n F • such that 

f fog d# >_ ao > O, then there exists a :l:l-valued function u in B(Loo) N F • such 

that f foU dl~ = ao. 

Proof of Lemma 3: Consider, if there is one, a function g in S for which there 

exists a subset A of positive measure and e > 0 such that - 1  + e < glA < 1 -- e. 

Since the set {f E Loo: [ f [ < 1a}N{fi}n=0 •  is infinite dimensional, it contains 

a non-zero element h of norm less than ~. But then g + h E S and so g is not an 

extreme point of S. Thus ext S = S Next B(Loo). 

Since S convex and weak*-compact in Loo, if S is non-empty then so is ext S. 

As for the last claim of the lemma, just note that if g E B(Loo) n F • satisfies 

f fog d/~ = f~ > a0 > 0, then ~ g is in the set S where ai = 0 for i > 0. By the 

first part of the lemma, any extreme point u of S will do. | 

Although the proof of Theorem 1 is somewhat technical, the overall idea is 

simple. Since T is not completely continuous, we start by finding a weakly 

convergent sequence {gn} in L1 and norm one functionals y* such that 60 <_ 

y* (Tgn). Each x~ will be a small perturbation of some y~.  Conditions (2) and 

(3) can be arranged by standard arguments. 

Now the proof gets technical. We begin by finding a subset A ~ where the 

T* * L~o function ( Yn)gn, which in the motivating example of To is the function 

rnrn, is large in some sense. We then proceed by induction on the level n. 

Given a finite dyadic splitting up to nth-level provides the subsets {Hm}~=o of 
An+l  and  corresponding Haar functions. We need to split each A~ into 2 sets --2k-1 

An+l ( thus finding h2~+~) and find the desired functionals so that all works. It 2k 
is easy to find the functionais to satisfy condition (4). In the search for x~+l, 

apply Lemma 2 to the set E given in (t) so that we need only to almost (within 

some r/) satisfy (1-i ~) for some y~; for then we can perturb y~ to find x~+ 1 that 

satisfies (1-i ~) exactly. Next, for each A~, apply Lemma 3 ~ with F as given in (~) 

and fo = T*y~la,~ and g being a small perturbation of gilA,. All is set up so 

that such a perturbation exists for a j (dependent on n but independent of k) 

sufficiently large enough. Now Lemma 3' gives that desired +l-valued Haar-like 

function that yields the desired splitting of the (n + 1)th-level. The sets F~' are 

chosen exactly so that conditions (1-ii'), (1-iii'), and (5') hold. 

Proof of Theorem 1: Let T: L1 ~ 3C be a norm one operator that is not 

completely continuous. Then there is a sequence {an} in Lx and a sequence {y~} 



212 M. GIRARDI AND W. B. JOHNSON Isr. J. Math. 

in S(9C*) N y satisfying: 

(a) IlgnllL  < 1, 
(b) gn is weakly null in L1, 

(c) 50 <_ y~ (Tgn) for some 50 > 0 . 

Using (a), (b), and (c) along with Rosenthal's gl theorem [cf. LT, Prop. 2.e.5], 

by passing to a further subsequence, we also have that 

(d) {T'y*} is equivalent to the standard unit vectors basis of gl- 

Since B(Loo) is weak* sequentially-compact in Loo, by passing to a subsequence 

and considering differences we may assume that 

(e) y~ is weak*-null in L~ ,  

where (d) allows normalization of the new y~'s so as to keep them in S(X*) and, 

used with care, (b) ensures that (c) still holds for some (new) positive 50. But 

{(T*y~) �9 gn} is also in B(Loo) and so, by passing to yet another subsequence, 

we have that 

(f) { (T 'y*) .  gn} ~ h weak* in Loo 

for some h E Loo. 

Since f h d# _> 50, the set A - [h >_ 50] has positive measure. We may assume, 

by replacing Yn by -y,~ and g,~ by -gn when needed, that II y,~ IA IILoo = 

T * _  $ $ $ ess sup Yn IA- So from (a) and (f) it follows that 50 ~< liminfess sup T y,~ IA 

while from (e) it follows that limsuptt[T*y~* IA~> 50 --~] < #(A) for each 0 < y < 

50. Thus, since the closure of the set 

{ ~ # : E c A ,  E6E  +} 

is the interval [ess inf f, ess sup f],  there is a subset A ~ of A with positive measure 

�9 0 and Jo such that yjoT(1A1) = 5#(A ~ for some positive 5 less than 5o, say 5 = 

and I"Io - { h l }  = I 1 a d . ( a ~  50- 3~. Put  

We shall construct, by induction on the level n, a dyadic splitting of A ~ 

along with the desired functionals. Towards this, take a decreasing sequence 

{e~}~_>o of positive numbers such that eo < e and ~ e ~  < 5o/2K where K 

is the basis constant of {T*y~}. The sequence {x~} will be chosen such that 

IIx~ - Yj~ II -< c~ for some increasing sequence {j ,}~ of integers, which will ensure 

conditions (2) and (3). Note that condition (1) is equivalent to the following 3 

conditions holding: 

(l-i) x~(Th) = 0 for h 6 Itm and 0 < m < n, 
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(1-ii) xm(Th ) = 0 for h E H~ and 0 < m < n, 

(1-iii) x~(Th) = 5 for h e H~, 

for each n. Clearly these three conditions hold for n = 0. Fix n _> 0. 

Suppose that  we are given a finite dyadic splitting {AT: m = 0 . . . .  , n and k -- 

1 , . . . ,  2 m} of A ~ up to nth-level, which gives the subsets {Hm}~=o of corre- 

l .*  ~P~ in S(X*) such sponding Haar functions. Thus we can find a finite set t~ , i j~=l  

that 1.* ~p,~ n t~,~,iJi=l norms sp([Jj= 0 THj) within rn. Suppose that  we are also given 

{x*}~= o in Y N S(X*) such that  the three subconditions of (1) hold and, if 

k = 1, 2, ...., n, then t[x~ - yj*~ [[ < ek for some jk. 

We shall find X~+l along with j4+1 > j4 such that IIX*+l - Yj*+I II -< e~+l and 

a~+l  and A~ +1 of we shall partition, for each 1 < k < 2 4, the set A k into 2 sets ..2k_ 1 

equal measure (thus finding h2~§ and so finding the corresponding set {H,~+l }) 

such that 

(1-i') x~+l(Th ) = 0 for h e Hm and 0 _< m < n + 1, 

(1-ii') x*(Th) = 0 for h E Hn+t and 0 _< m < n + 1, 

(1-iii') x*+l(Th ) = 5 for h e H~+l, 

(5') TH,~+I C t~,,i,i=l . 

Towards this, apply Lemma 2 to 

(t) E - { T h : h 6 H m ,  O<_m<_n} 

and en+l to find the corresponding ~n+l. Let 

= * * }i=1 C L1 (:~) F~ {1A,~}U{T*x*IA,2}~=oU{T Zn,ilA, ~ p" 

F,~ sp [ 2'* ] and = 

Pick j _= j,~+l > J,~ so large that for k = 1 , . . . ,  2 '~ 

(g) I(T*y;)hl < ,4+1 for a l l h E U ~ : o H m  , 

~  (h) ]fagjfd#] _< gtl I] for all f in F~, 

(i) fA~ T*y~ .gj dt~ >_ (5o - e) t~(A~). 
Condition (g) follows from (e), condition (h) follows from (b) and the fact that  

F~ is finite dimensional, condition (i) follows from (f) and the definition of A. 

By Lemma 2 and (g), there is x*+l E S(X*) N y such that  IIX~+l - y~.+, [I is 

H at most e~+l and x*+lTh = 0 for each h e [J,~=0 ,~. Thus (1-i') holds. 

Condition (h) gives that the L~-distance from gj to 

F~ = {g e L~: []gdp = 0 for each f �9 F~} 
Ja  
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is at most e/3. So there is ~j e F~NB(Loo) such that ]]~j -gjllL= is less than e. 

Clearly gjlA,~ E f ~  • CI B(Lr162 for each admissible k. By condition (i), for each 

admissible k, 

~ ( T * x * + l  ) �9 d# 6#(A~) (~jlA~) _> 

and so, by Lemma 3, there exists a function u'~ E B(L~) n F~ • such that 

(*) ~ (T'X*+l) �9 (u~) d/~ = $/~(A~) 

4n+1 and A~ +1 whose and u~ is of the form 1A~+12k-1 -- 1A~ +1 for 2 disjoint sets "'2k-1 

union is A~. Furthermore, "'2k-lan+l and A~ +1 are of equal measure s ince  1A~ E F ~ .  

Since u~ e F~ • conditions (1-ii') and (5') hold. Condition (1-iii') is just (*). 

Theorem 1 contains much information. For example, the next corollary 

crystallizes the role of the previously mentioned operator To. 

COROLLARY 4: If  the operator T: L1 ~ 3E is not completely continuous, then 

there exist an isometry A and an operator B such that the following diagram 

commutes: 

L1 T ~ 3E 

1 
L1 To ~ ~ 

Furthermore, if 3C is separable, then To and B may be viewed as operators 

into co. 

Proof of Corollary 4: Let j l  be the natural injection of LI(A) into L1, let Xo 

be the norm closure of T (jl L1 (A)), and let ~,  be the restriction of z~, to 3Co. 

Since {T'x*} is weak*-null in Lo~, ~* is weak*mull in 3~;. Thus the mapping 

U: ~1 ~ 3C~ that take the nth unit basis vector of l l  to ~* is weak* to weak* 

continuous and so U is the adjoint of the operator S: 3~o --* Co where S(x) = 

(x))n>o. 
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Consider the (commutative) diagram: 

T 
L1 ' 

J~l I j~ 

L~(A) T~ , Zo 

L1 ') co J3 ,) e~ 

where R: L1 --- L1(.4) is the natural isometry that takes a usual Haar function 

hj in L1 to the corresponding associated Haar function hj in LI(A), the maps j~ 

are the natural injections, and T.a is such that the upper square commutes. 

For an arbitrary space 3(, since ~ is injective, the operator j3S extends to an 

operator S: :~ ~ gor For a separable space :~, since co is separably injective, 

this extension S may be viewed as taking values in Co. 

Let A = j l R  and B -- ~S. Then BTA('hj) = ~ (~* (Thj))n>o. Property 1 of 

Theorem 1 gives that B T A  = To. | 

Corollary 4 says that, viewed as an operator into gr162 (respectively, into Co), To 

is universal for the class of non-completely-continuous operators from L1 into an 

arbitrary (respectively, separable) Banach space. 

THEOREM 5: There does not exist a universal operator for the class of non- 

completely-continuous operator. 

The proof of the nonexistence of such an operator uses the existence of a 

factorization through a reflexive space for a weakly compact operator. 

Proo/: Suppose that there did exist a universal non-completely-continuous oper- 

ator, say TI: 3( --* Z where ~ and Z are Banach spaces. Then there is a sequence 

{x~} in 3( of norm one elements that converge weakly to zero but whose images 

{Tlx~} are uniformly bounded away from zero. Furthermore, by passing to a 

subsequence, we also have that {TlXn} is a basic sequence in Z. 

The first step of the proof uses T1 to construct a "nice" universal non- 

completely-continuons operator. By Corollary 7 in [DFJP], there exists a re- 

flexive space y with a normalized unconditional basis {y~} such that the map 

S: y --* 3( that sends yn to x ,  is continuous. Consider the map U: Z --. tr162 that 

sends z to (z*(z)) where {z*} is a bounded sequence in Z* such that {Tlxn, z*~} 
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is a biorthogonal system. The map Iy = UT1S sends y,~ to the nth unit vector 

of g~. The reflexivity of y guarantees that Iy is not completely continuous. 

Since Iy  factors through the universal operator T1, the operator Iy must also be 

universal. We now work with this "nice" operator Iy. 

For any linearly independent finite set (xk}~=x, let D(xk}~=x be the norm of 

the operator from the span of (xa}'~= 1 to g]~ that sends xk to the kth unit vector 

of g]~. Set d,~ = :P(yk}~=l. Reflexivity of y gives that d~ tends to infinity. Let 

T be a (reflexive) Tsirelson-like space with normalized unconditional basis (tn} 

such that for all finite subsets F of natural numbers, 

7){tn}nEF <_max {2, V/-~l } , 

where [ F [ is the cardinality of F. For example, {tn} can just be an appropri- 

ately chosen subsequence of the usual basis of the usual Tsirelson space [cf. CS, 

Chapter I]. Consider the non-completely-continuons map IT: T --* goo that sends 

tn to the nth unit vector of goo. By the universality of Iv,  there exist maps A 

and B such that the following diagram commutes: 

T I T  ) goo 

y Iy ", too 

Since each Iy(yn) is of norm one, there exists 6 > 0 such that 6 < HITAynJ[ 

for each n. Each Ayn is of the form 

o o  

Ayn = E ~n,m tm 

and so there is a sequence {m(n)},~ of natural numbers such that ~ <l an,~n(,~) ]. 

Since {y,~} tends weakly to zero, for each m the set of all n for which m(n) = m 

is finite. Thus by replacing y with the closed span of a suitable subsequence of 

{Yn}, we may assume that the m(n)'s are distinct. 

Let T, be the subspace of T spanned by {t,~(n)}~. Since {y~} and {t,~(,0} are 

both unconditional bases, by the diagonalization principle [cf. LT, Prop. 1.c.8], 

the correspondence yn ~ a,~,m(n)t,K, ) extends to an operator D: y ~ T,. 

Since {tin(n)} is an unconditional basis and 6 <1 an,,~(n) I, the correspondence 

an,re(n) tin(n) ~-+ tin(n) extends to an operator M: T, --+ T,. 
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By the definition of d.,  there exists a sequence {~}in__l such that ~-'~i~1 [ ~ 1= 

1 and 
'~ 1 

i=1 

By the choice of T, for large n, 

n 

-- i = l  

Since MD: Y ~ T. maps y~ to t.,(.), 

This gives that 

n 

l] ~t,,,(i)[[T. _< [[MDll JJY~iYifJy- 
i=1 i----1 

1 IIMD]I <<- a---Z' 

which cannot be since d.  tends to infinity, m 

The first two paragraphs of the proof of Theorem 5 yield part (a) of the next 

proposition. Part (b) follows from similar considerations and the Gurarii-James 

theorem [Ja, Thm. 2]. 

PROPOSITION 6: 

(a) Let ~ be the collection of all formal identity operators into too from 

reflexive sequence spaces for which the unit vectors form a normalized 

unconditional basis. Then G is universal for the class of all non- 

completely-continuous operators. 

(b) The collection {I: Ep ~ ~oo; 1 < p < oo} of formal identity operators is 

universal for the class of all non-completely-continuous operators whose 

domain is superreflexive. 

Recall that a Banach space 3E has the Radon-Nikod~m Property (RNP) 

[respectively, is strongly regular, has the Complete Continuity Property (CCP)] 

if each bounded linear operator from L1 into :~ is representable [respectively, 

strongly regular, completely continuous]. The books [DU], [GGMS], and [T] con- 

tain splendid surveys of these properties. Here we only recall that a representable 

operator is strongly regular and a strongly regular operator is completely contin- 

uons. The first paragraph of the proof of Theorem 1 uses elementary methods 
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to construct, from an operator T: L1 --* 3f that is not completely continuous, a 

copy of s in the closed span of a norming set of 3L On a much deeper level, the 

following fact is well-known. 

FACT: The following are equivalent. 

(1) ~1 embeds into 3s 

(2) L1 embeds into 3U. 

(3) X* fails the CCP. 

(4) ~* is not strongly regular. 

The well-known equivalence of (1) and (2) was shown by Petczyfiski [P, for sep- 

arable 3C] and Hagler [H, for non-separable X]. The other downward implications 

follow from the definitions. Bourgain [B] used a non-strongly-regular operator 

into a dual space to construct a copy of/1 in the pre~dual. Here the authors 

wish to formalize the following essentially known fact which, to the best of our 

knowledge, has not appeared in print as such. 

FACT: The following are equivalent. 

(1) 3~ has trivial type. 

(2) X fails super CCP. 

(3) 3E is not super strongly regular. 

Proof: To see that (1) implies (2), recall that 3C has trivial type if and only if 

~1 is finitely representable in X and that L1 is finitely representable in ~1. Thus, 

if 3C has trivial type, then LI is finitely representable in 3C and so 3~ cannot have 

the super CCP. Property (3) formally follows from (2). Towards seeing that (3) 

implies (1), consider a space 3E that is not strongly regular. From the above fact 

it follows that ~1 embeds into 3U. Thus 3U has trivial type, which implies the 

same for :~. | 

References  

[B] 
[CS] 

[DFJP] 

J. Bourgain, On martingales in conjugate Banach spaces, unpublished. 

Peter G. Casazza and Thaddeus J. Shura, Tsirelson's Space, Lecture Notes 

in Mathematics 1363, Springer-Verlag, Berlin, 1989. 

W. J. Davis, T. Figiel, W. B. Johnson and A. Pelezyfiski, Factoring weakly 

compact operators, Journal of Functional Analysis 17 (1974), 311-327. 



Vol. 99, 1997 UNIVERSAL NON-COMPLETELY-CONTINUOUS OPERATORS 219 

[D] 

[DUI 

[GGMS] 

[H] 

[Ja] 

[J] 

[LP] 

[LT] 

[P] 

[RS] 

[T] 

Joseph Diestel, Sequences and Series in Banach Spaces, Graduate Texts in 

Mathematics, Vol. 92, Springer-Verlag, New York-Berlin, 1984. 

J. Diestel and J. J. Uhl, Jr., Vector Measures, Mathematics Surveys, no. 15, 

American Mathematical Society, Providence, R.I., 1977. 

N. Ghoussoub, G. Godefroy, B. Maurey and W. Schachermayer, Some topo- 

logical and geometrical structures in Banach spaces, Memoirs of the American 

Mathematical Society, no. 378, American Mathematical Society, Providence, 

R.I., 1987. 

James Hagler, Some more Banach spaces which contain tl, Studia Mathe- 

matica 46 (1973), 35-42. 

R. C. James, Super-reflexive spaces with bases, Pacific Journal of Mathe- 

matics 41 (1972), 409-419. 

W. B. Johnson, A universal non-compact operator, Colloquium 

Mathematicum 23 (1971), 267-268. 

J. Lindenstranss and A. Petczyfiski, Absolutely summing operators in 

s and their applications, Studia Mathematica 29 (1968), 275-326. 

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, 

New York-Berlin, 1977. 

A. Pelczyfiski, On Banach spaces containing LI(#), Studia Mathematica 30 

(1968), 231-246. 

Lawrence H. Riddle and Elias Saab, On functions that are universally Pettis 

integrable, Israel Journal of Mathematics 29 (1985), 509-531. 

Michel Talagrand, Pettis integral and measure theory, Memoirs of the Amer- 

ican Mathematical Society, no. 307, American Mathematical Society, Provi- 

dence, R.I., 1984. 


